
LABORATORY FOR ft MASSACHUSETTS

fNSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-398

AD-A213 935

PARALATION VIEWS: ABSTRACTIONS FOR
EFFICIENT SCIENTIFIC COMPUTING

ON THE CONNECTION MACHINE

Kenneth J. Goldman DT i C
X.' ELECTIE

03CT 3 0199

Al0.
June 1989

5.45 TECHNOLOGY SQUARE. CAMBRIDGE. MASSACHUSETTS 021 1)

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la, REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NIT/LCS/TM-398 N00014-85-K-0168 and N00014-83-K-0125

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Laboratory for Computer (If applicable) Office of Naval Research/Department of Navy

Science

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
545 lechnology Square Information Systems Program

Cambridge, MAL 02139 Arlington, VA 22217

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA/DOD I

8c. ADDRESS (Cty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Boulevard PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217 ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (Include Security Clauification)
Paralation Views: Abstractions for Efficient Scientific Computing on the Connection Machine

12. PERSONAL AUTHOR(S)
Goldman, K.J.

13a. TYPE OF REPORT 13b. TIME COVERED TO A- DATE OF REPORT (Year, Month,Day) u1 PAGE COUNT
Technical IFROM _____TO _I 1989 June I7 2Z

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP p programming languages, parallel programming languages,

SIMD architectures, Connection Machine, scientific program-

IIming. data abstraction - i
19. ABTRACT (Continue on reverse if necessary and identify by block number)

\-An ideal parallel programming language for scientific applications should provide flex-
ible abstraction mechanisms for writing organized and readable programs, encourage a modu-

lar programming style that permits using libraries of tested routines, and, above all,

permit the programmer to write efficient programs for the target machine. We use these

criteria to evaluate the languages *Lisp, Connection Machine Lisp, and Paralation Lisp for
writing scientific programs on the Connection MachinL. As a vehicle for this exploration,

we fix a particular non-trivial algorithm (LU decomposition with partial pivoting) and

study code for implementing it in the three languages.

Based on our findings, we propose two extensions to Paralation Lisp for writing scien-

tific programs. The first extension is a new mapping facility, which reduces communication

overhead from O(Ign) to 0(1) in many situations. The second extension, called Paralation

Views, is an enhancement of the Paralation Lisp shape facilty. By allowing the programmer

to view the same set of data with multiple abstractions, this extension results in programs

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

El UNCLASSIFIED/UNLIMITED r SAME AS RPT. [DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Judy Little, Publications Coordinator (617) 253-5894

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*ILI G ovrianwi OWft" 09fm: MS-WW.0

Unclassified

19. that are both more readable and more efficient. A possible implementation
strategy is presented. Paralation Views integrates well with the existing
Paralation Lisp language and provides excellent support for modularity
and nested parallelism.

Paralation Views:
Abstractions for Efficient Scientific Computing

on the Connection Machine

Kenneth J. Goldman

June 22, 1989

Accession For

NTSGRA&I
DTIC TAB
Unannounced

Dli'.,Justirlcatio

Distribution/

Availability Codes
Avail and/or

Dist Special

Abstract

An ideal parallel programming language for scientific applications should provide flexible ab-
straction mechanisms for writing organized and readable programs., encourage a modular program-
ming style that permits using libraries of tested routines, and, above all, permit the programmer
to write efficient programs for the target machine. We use these criteria to evaluate the languages
*Lisp. Connection Machine Lisp, and Paralation Lisp for writing scientific programs on the Con-
nection Machine. As a vehicle for this exploration, we fix a particular non-trivial algorithm (LU
decomposition with partial pivoting) and study code for implementing it in the three languages.

Based on our findings, we propose two extensions to Paralation Lisp for writing scientific pro-
grams. The first extension is a new mapping facililty, which reduces communication overhead from
O(lg n) to 0(1) in many situations. The second extension, called Paralation Views, is an enhance-
ment of the Paralation Li.sp shape facility. By allowing the programmer to view the same set of
data with multiple abstractions, this extension results in programs that are both more readable
and more efficient. A possible implementation strategy is presented. Paralation Views integrates
well with the existing Paralation Lisp language and provides excellent support for modularity and
nested parallelism.

Keywords: programming languages, parallel programming languages, SIMD architeci ures, Con-
nection Machine, scientific programming, data abstraction

@1989 Massachusetts Institute of Technology, Cambridge, MA 02139

This research was supported in part by the National Science Foundation under Greant CCR-86-

11-.12, by the Office of Naval Research under Contract N00014-85-K-016S, and by the Defense

Advanced Research Projects Agency (DARPA) under Contract N00011-83-K-0125.

1 Introduction

For a programming language to be acceptable to the scientific community, it must provide too!s
for writii.g programn that rua efficiently on the target machine. This requirement, which cannot
be overemphasized,)artially explains why FORTRAN has remained the overwhelming favorite for
writing sequential qrientific programs. Of course, flexible data abstraction mechanisms and support
for modular programs can result in considerable savings iii initial design effort. debugging, and later
modification of programs. But these features alone do Lot constitute a good language for scientific

programnrning: when given the choice between a high-level language with degraded performance
and a low-levei language witli good performance, the scientific community will invariably prefer the
latter.

However, we contend that such a trade-off is not necessary. In this paper, we evaluate three
languages in terms of their utility for writing scientific programs on a particular parallr architec-
ture. The languages, all derived from a common base language, range from relatively low-level t&.

relatively high-level. We consider the advantages and disactvantages of each language in terms of
its expressive power and its efficiency. Based on our findings, we propose enhancements to one

of the high-level languages that result in the ability to write programs with efficiency comparable
to that of programs written in the "low-level" language. Interestingly, these enhancements do not
take the form of low-level system calls or awkward hints to an optimizing compiler, but rather take
the form of additional abstraction mtchanisms that not only allow programs to run faster, but also
result in code that is more modular and easier to read.

As our target machine architecture, we use the Connection Machine [5], specifically the CM-2
[13].1 The Connection Machine is a SIMD computer (Single Instruction, Multiple Data) with 21(
processing elements, each having 64K bits of local memory. The processors are arranged in a 12-
dimensional hypercube communication network, with 16 processors and one communications router
per chip. When the network is uncongested, communication may be considered to be a unit time

operation. User programs, which run on a front-end computer, cause instructions be broadcast to
the processing elements on a bus. This bus is also used to retrieve data from the processors for
delivery to the front-end.

In a SIMD computer, the processors execute the same instruction simultaneously, but the
results at each processor may depend upon data values in that processor's local memory. Each
processor maintains a context bit, which indicates whether or not it is active. Certain instructions
are conditional, executed only by active processors. The remaining instructions are unconditional,
executed by all processors. Instructions may cause local computation, communication, or a change

in the set of processors. In addition, the Connection Machine provides a "wired-OR". which
allows certain global conditions to be computed quickly. For example. the wired-OR is useful for
determining when all processors have terminated an iterative computation.

The languages we consider are *Lisp [14], Connection Machine Lisp [11. 5], and Paralation
Lisp [8, 9]. All are based on Common Lisp [10]. and all have implementations running on the
Connection Machine. In *Lisp, the most low-level of the three, programmers explicitly control
the context bits of the processors using special functions, and no data abstraction mechaninins are
provided. Programs in *Lisp tend to be monolithic, but quite efficient. Connection Machine Lisp
provides a single abstraction, called the xapping, which permits context to be selected implicitly.
However. significant conmunication oxerhead often results from manipulating xappings, especially
when one wishes to work on only a portion of a xapl)ing. In addition, the xapping may not be

IThis paper does not address the question of whether or not the Connection Na(hine architecture is well-suiled

for particular scientific applications, hii t simply takes the rnachine as a given and conc ntrates on the lango age issues.

the most useful abstraction for many scientific applications. Finally, Paralation Lisp provides the
paralation as the abst raction mechanism. and allows programmers to create paralations of arbitrary
':f,pcs, with particular locality properties and access methods. A small set of powerful operators

for manipulating paralations are provided. The locality properties can result in improved efficiency,
but working with portions of a paralation remains difficult and expensive. The power and generality
of the commnunication mechanism can result in unnecessary overhead.

Based on our observations about these languages, we propose two extensions to Paral!tion
Lisp. tlhe first extension is a new mapping facililty that reduces communication overhead from
O(lg n) to 0(1) in many common situations. The second extension, called Paralation Views, is
an enhancement of the shape facility that allows a given paralation to be viewed not only as a
single shape, but as multiple different shapes. With this facility, different views of the data may
be efficiently created during program execution using a special set of operators (project, split,
and extract). Thus, at each point in a program, the abstraction appropriate for that stage of the

oinputation may be used. In addition, Paralation Views permits many operations to be performed
in placc that would otherwise incur expensive communication overhead. Therefore, programs using
this facility are both more readable and more efficient. Paralation Views integrates w.'ell with the
existing language, and gives excellent support for modularity and nested parallelism.

The remainder of the paper is organized as follows. In Section 2, we describe a particular al-
gorithi that is used as a starting point for our discussion of the languages. An overview of each
language is presented inl Scc*,;OIn 3. and evaluations and comparisons are made based on analysis of
corresponding code for the example algorithm. In Section 4, we present the new mapping facility
for reducing communication overhead. In Section 5, we present Paralation Views, and Section 6
presents the example algorithm written using Paralation Views. In Section 7, we discuss implemen-
tation. Finally, Section 8 describes a programming paradigm which is useful for achieving nested

paralellism using Paralation Views. We conclude with a summary and some possible directions for
further research.

2 An Example Algorithm

Aks a common thread I hroughout our discussion of the languages, we fix a particular non-trivial
algorithm that is amenable to efficient execution on the Connection Machine. The algorithm, LU
decomposition with partial pivoting, is non-trivial for several reasons. First, the communication
pattern is data dependent. One cannot predict which processors will send messages to which other
processors at a given stage of the algorithm until actually reaching that stage. Second, it requires
the set of selected processors to vary throughout the execution; not all processors participate at all
times.

LU decomposition is useful for solving systems of linear equations. A matrix L is unit lower
triangu/ar if and only if all elenentls on its main diagonal are 1, and all elements above its main
diagonal arp 0. A matrix U is uppur triangular if and only if all elements below its main diagonal
are 0. Consider the euiation Ix = b. where .1 is an n x n matrix and b is a vector of length n.
One way to ,ol:e for X is to perform the following stops. First, decompose the matrix A into a unit
lower trianugular matrix L and art upper triangular matrix U such that A= LU. 2 Then, solve for

y in Ly - b by forward elimination. Finally. solve for .r in 1Ua = y by back substitution.
1.1' deconi position with partial pivoting has been siudied extensively as a parallel algorithm

[2. 61]. Th,, input to the algorithm is all i x n mat rix A. The output matrix is obtained by
2We should riot(that an LI' decomposition does riot exist for some matrices [1]. The programs in this paper do

riot check for thi., sit ation.

2

1LT-h CO'%POSITION(A: n x n)
vector 1: n x n, Tomp: n x n
for i -0 to n - 2

do ilk XAX-SCAIN(i,A) /* mnax-row
t- -1.0/ r

if (row(I) =i and rol(l) ! i) /swap *
then Temp -A

A - A(k,col(l))
A(k,col(I)) - Temp

if (row(I) > i and col(l) =i) /*normalize *
then A - t

if (rowv(I) > i and col(1) > i) /* uipdate *
then A - A + A(row(I),i)*A(i,col(l))

return A

NIAX-SCAN(i, Nl: n x n)
vector 1: n x n, R,: n x n

while (row(I) -k) >
do if abs(M%) < abs(I(l-k,i))

then M - M([-k,i)

k - 2k
return N1(n, i), 1(n, i)

Figure 1: 1,1 Decomposition Program in SHAD Pseudocode.

successively modifying A with a sequence of steps that is executed for- each index i from. 0 to u - 2:

1. Max-row: Find v, the maximum absolute value in column i on or below the main diagonal.
and let k > I be the index of a row having v in column i.

2. Swap: Swap elements i through n - 1 of rows i and k.

.3. Normalize: Multiply all elements below the main diagonal in column i by the value - 1.0/v.

4. Update: For all i < r, c < n, let Alr, c] =Ajr, c) + A[r, i] * Ai, cl.

The resulting matrix (call it Ml) is not actually the LU decomposition of the original matrix A.
but is sufficient for solving systemns of equations of the form Ax b. Let A' be the input matrix
with whole rows reordlered according to the sequence of swaps performed in the algorithm, andl let
A' =L'U'. The values on and above the main diagonal of ill form 1/7. and the negated values, below
the main diagonal of Al (with partial rows reordered as for T') form the matrix L'.3 B 'v similarly'
reordlering b,, one can find x using forward elimiination and Iback substitution as descri ~ed ab~ove.

The SIMI) pseudocode in Figure 1 illustrates the steps for executing this algorithmn on thle
Connection Machine. The pseudocode syntax is duie to ['I). Vectors are allocated one element per
processor. '"I"' is a special vector that declares the mlaximiim (and initial) set of active processors.

Parfii pivoting mnay) save timec andl/or space on some sYstemis [2], hlt, there spems t~o be no reason to avoidl
swapping ontire rows it) Step 2 on flie (:ojinect-ionl %4:111SI'Il is would enable)I ime to readl ;.' (ireti fi'l tro t

oitjoat iaft ix< wifliou! rf-ordkrirtg. Ilowever. WC (IC th'-pIbuild jpi%,olt g [or pl ttImse.5 o f it tu I itt.

Onl each processor. 9- contains thle (1id of Sa' processo. andi row() and col(I) denote its gid

coordinates M'ome is inilHeil byv thei(if stateniet and the while statement. which terminates
whlen noi processors a re active . AxetOr variale I'Wit houLt di subscript refer" Lo the elmets i

that % eilo(i at active proo ssors. A vecto r variale wit I a su bscri pt deniotes a -'get" or -senid,-* as
appropriae. The Mt.\X -S(.*\N so broi in is ani exam pie of a logarith roic scanr comi tat ion

throuthout thle paper, we assoiie that the elemnts of the input matrix are appropriat clv
dist ri bited on the ('otnecl ion NI iili ii- pnwoe 55ors owe element per processor. WAe (10 not corisid er
how I/0 is handled ill anly of the languages. Ili addlitiotn. we do not address the questioni of whether

or' not this part iculhar algorit lini is t lie best one for solvinlg IJA (]('Composition Onl the C'onnectiotn
Machine, or even if LU dncoinposi ton is thle best way, to solve systems of linear equations on th

Connectan Mach inc. N%? simrrply take thle algorit Iii as a useful vehicle for exploring the languages.

3 Three Languages

i'hiis section compares three languages. *ULsp. C ontnect%(i Machine lisp. atid Paralation Lisp. in

erms oif' tlivi r a bil iby to cx press e fticiiei scien1i ific p rigranris for thle ('on nect ion Machi ne. F'or eachI
latgivuage. we prese nt a brief overview anid d isiuss its pamrt ciar strenigthIs anid weakiness refrrng
to corresponing coefr1(tcmoiin llot glniga he exaniple, programi for each

lan goage is usefutl. it is not necessa ry to it mdi'rst and all thle detais in order to benefit fronm the
disctussioni. Itn ,,,ci'tol1 3,1, we- uinriarize illu observations andl tiotvate the ideas presented inl

lit er sect ionst .

3.1 *Lisp

3.1.1 Languiage Overview

MIachlin e memory: a pva t is art array hiavi ng on e elviet e at t he sa roe ad dress in each processor.
At Unitialization time. otie po ckies whethr pvars in a program are one- or two-dimensionaL One
canrinot iiiix t lie two types in titlie satite p~rograrn. 'I'lie, fr i ction *defvar creates a permanent pvar.
and Nl*et creates a moar in thle cuirrent tscope. Ini addoit ion,* a pvar cani be created with a !! suiffix

(caled lie -han ri g- ii ' me atiQ [orvnamph'. 3! reatesa pvar in whtichi everv element contains
the value 3. (One night think of !! as thle front-end skouting to the processors")

In dividuiial oiitries of a pva a re accessible %vith pref at) d pref -grid, (](,enin~irg upon the rumbnler
of diiii'rsiis in ruse. [or exaripl. if mat in a twM(ittietsolal p)\'r.

(setq (pref-grid mat 3 4) (pref-grid mat 5 4))

copie's thle vahtre of roar inl lir(('soii 5AI it Ihe hoitott of otat iii procc-~sor (3,1). At Ihu timte
;I pvar is created. lie cttrrettl t v Ieec ei set (i.e.. tllie se(t of proc" "sors whose cc, ritext hit isI

detriiteswhich processorts oritatiu values for thtat pvar. 'lteref -o. if processo- (3.1) or(F.)
is riot itt t lie ,elected set whet, mat i' cmat' d. I lie aihi, sterietca,' art error. Processors

rmayv diF''orr thieir own addlwm "e~swthI thle hit i ot self - address- ati self - address -grid!

which Take, a dittietisioti ar-ut tttettt

Ill' culrrentlv sel-cted set is itioililielh, lv. " ('t ii special fuinctionts. For(xample, iii the stalin i

(*all body,). every hri('~ssr is act ive at tie(w,1 (I body. Wiu llt body1, a stat ent''at of ihe

fortt (when pc~~t Io i(f W/d-WIld,) wi nul hIci itse all inro cessoirs whoi se local variables o0 riot satisfy,

li1e prvlicaite to ne titlove.d ftottt Il, clie (ureit lv selcted sei t.'foe 71kHYI-bedq is execi,.6. Thje

i(e t t i I l j (ii ia t - a i

(res Il t))I
row (C -ad d ress- grid! (1!i

(col (self- add ress-gr-id! fIt!!))
(doclarte (typ, (pvar dou11lde-float) temlj)) 1 o't ilinizes oper-Ations oil temlp

declIa re (t ype (pvar d ouhle-f 41 at) resti It)) p1111 iitlzos (ql-at (IoMi Oil ro~st It

(resuilt)
(*wheitn (logand!! (>=I' row F"!) (=if (.() i!1)) : mx-row

(m.etq X. (*rllax (abs!! teipf)
(Vlei(!' tenmp v!!)

(s, tq k (*niin row))))
*XVllell (logand"! I =11 rowv 1!! (>= Co (111)) sa

ScTf rosidl I r'f-gridl ! l k!! co0l :ioI1 i i iu))
(set f (~ref-grid! te-mp k!l col mliorollisioiis) temip))

(*wlicii (logand!! (If row% i!tf) (=!! ('0! It?)) noriialite
(*.-t restilt (*"! telli) (/ -1.0 %)!!)))

(*Nvhent (logand!! (>f! ro%%- i!) (>I? Col if!)) lplt

(*set temp11 (+I, tempj (*I

(pref-rid!! resuilt row I i many-collisions)
(pref-gr-id!! result i col mnany-collision-))))

Figulre 2: L17 Decompjosition Programi mu *Lisp.

currently selected set is dynainically scopedl. After neste(1-body termiinates, the ciitrentlv selected
set is restoied to thc -value it had before the *when.

The hang-bang operator is uised to express parallel comiptations. The statemient.

(setq pvar-a (+!! pvar-a pvar-b))

incremients the valuies in pvtr-a by the valnes in pvar-l) (in thle cirrentlY active processors). Comn-
munication is accomplished simiilarly with pref ! ! aind pref -grid! !. To optimize commu-nnicatiton.
the programmter miay specify "no-collisions." -- na iy- collisions, or "collisions-allowved" as an op-
tional argumient. according to the number of reads fromn the same location. For data aggregation.
*Lisp provides a set. of functions which operate on the cuirrently' selected set. For examiple. (*min
pvar-a) retuirns the- smiallest valuie in pvar-a amnong all active processors. In addition, the fnnc-
tioiis scan! ! and scan-grid! ! are available for performning a sc an comiputation onl a pvar wvith a
combining funffction chosen froin a predefinied set (e.g. +et. c). The programmner tuay not suiply
an arbitrary function to scan!

3.1.2 Discussion: Why *Lisp programs are non-modular

Figuire 2 contains the *Lisp programi for 1Y decomnposition. One striking feature about *Lisp is
that, wri ti ig efficienit. lrogrd nis is fairlY easy, heca use thle rn ac line ittodel is corniplet ely t ra ispa renli
Thle p rograiior has corniplete conl1rol overlhow lhe dat a is ditribt er onf the processors. P roce'ssor
selection is iiade explicit, and it is obvioiis whiere the conitlltnicatiotl is taking place. Hlillits to t he
comipiler, like thli types of' pva rs and1(coin in titt catil Co l lisioni rat es. p rovi(de ad i tional cou t ol.

Ill'.%k" k .1" f)r1t Il~p.iiv'utl()1" to ave iP a I w()-d(llll'i nPI gridl as our only data stilict ure. Ifowever.

in -It hat i-a(- ijoreFq Ciiiplicatel -,Ilata ltriiil ifres or)Inix different types of data strl- iires mufst
peornii awkwar-d advips, (olipl itios. A ielavdl pnvnlei. that causes *Lisp) programs to be
I, I'' r i ip ii I inli. i, hal ()t can'i fare a Im h il I h11e dat a an (1 pass it to a functijon as a newo

-1 ot rv Itis fl>.iil*I'I i ;IW set Of processors a111(then call aI procedure. but1 the
l)-iivl~is loiacevl t(Ofib wi i orliae~-t-i thle larger otructinre. One cannot create

it lilfvrai.)t If)1f!il- t llit vvrIeT4 (Ii tns allt Ilien pass piei es of rows or coluns of mlat rices
to 11 4 1 1

\llv i()jIT iI ltjii~u I(thoy](Illm l!ll (4 plii)giiils is at peciiliar inter-action betweeni the
.illili~t(If' - l~~j Pn li, 'tl elecl limi torjutrs ofi Misp. Fiji- interaction inakes it

dificnl lol-e'all P~plnic\.-,, , \le. Iliist oiild. I h(()I 1'liillhirtlfe protgjaiiiiniig paradigni i-:Set cotitext.

ilitillit. -tl / iWiMl/h. lt C()IIltiXt (Ic. ItII51110'U i claurni. considler the followinig alplicat 1W

stlv~. cod tivil, t HI el (1 it*- t il lite Step I iif the(exarrilple algorilhiln.

(*min (*when (=!! matrix (*mrax
(*when (logand!! (=!! col i'! QV=! row iH) (*defvar p matrix))))

(*defvar q row-)))

lie, *.Tax v. rsi, i p;)(i pv d ht End IN t a xi liil n vat ie r' ini rm 1111 on or below thle n11ik

vliamIvIIPl. 1 11' -'lurlmoonq *mn k"jm-dI illi' l in ujIr' smnakllt idx arliorg rows havinri
(dilL i tr lwIr thc !n;ii I-i Blit t6,lts H- i what liappo-i-. Jbecause the sel&Mtep set

j ~ ~ i rihj.4 i p from TIi.- ihnt *whenl. the poar p i-' jw iffiltul Of- all the, selected prnoso-s
vh, ti' i i i:a xiii in Ii ta kv--i I hi-,I -t . the(*max Ih m a is relr ii (s "l efined Qautes! E-:ur if we

tlP ll- *max f au- n lii i UP- (nioti vr in h final value retiriid is still riot ihe

41esiiv-d jileX. bill illi!,i Il, heliiiiiiiiil row iitdex aifitg all eleintsi with value v- in the WSi

illii. This is a aii luv (IIIItXt is retr imn 11)01 eturn fronti the 'inner *when.
0InI Im-lihle 1,11G~n -, tf, P%,id '\plZiiit fcontext Te- ionl ill prograrills by providing higher-level
;iiio-feat lires t hat iw'Il~ -lct Gin hii hecciihse iiiiplicitlv. This approach is taken by

3.2 Connectijon MIacine lisp

(*Iui, i~l Oh P ill,, Ia-~p pPvv~ii~i data aliiP aionl. the xnIppilly (read ..7-appirig). wich
la-;t iA--"mom Of \aiiie" iii ;I vlloI((J md\l ies..iliov e~actl ,v one value(from li le range is specified for

",I(i %P111e ini I lie dwfin. P xappillis a Irialiettiar ici fiinit ion. Nappiligs are written as follows.

A vIi ii ll ii lii a hi !: a cl kfiii dn v l i t niii i ll o ii sef. .) \ ,i~ppinrg whltte doni an iiiI a
ilefjIx o I'-li" i ii('-Ilt v'ji is calle-d a i'(cloi-. alid may heb~ abbreviated as a sequrerice of

vaiiiw ii, -vliire lviPck',--.......t.int xa;; iat- Pll indlices to the larie valuie. For examiple.
-- c} wohlwovite loo: at aPl TOdi~ 6h iint iii xref is used tovaliiitea xnpping at a particlar
ile.(iul dlta Pitnt .I#- (1ale'd Ivy ti- i~xajtpiri,.s A mnat rix itight he representedI
a Xe i t o \(-i this. kv, e l 'aihi nI~ i il a row\% of tie itatrix.

I fe-.j s tip Vi uu ti' ii ill . ;pfti isIn I I i -at wo l it iota and tlie o operator. 'I'lie

fiiiiclioii iota wh"-;e a iifit-e WeiKtI a,- ilpIiv anid remlni- a xecitir x! nifthal length -or examleo.
(iota 4) ret liii th lie o Eet Q 1 2 3]. Il1 ho virti 'is a fi~'ii oodl that takes, a value, arid
p ()i l ii if- i 'IllI Piill X~ii lii \%if tl 1 fiat %~ i111 . I '0 tv (iI2 L iIasp toC a llow Xapi iigs ini t lIe positin (If
filiti oii calls etiivhle-l hll- (o)pervtvr o of If)lt n 1(I. !Iiii tiing functions eletierit-wise on at xappirtg,

il' i l It vvf XPppilltt-. In in i a iiv\ x~ opilv2-. I '\I lid .

if

(*(iota 4) o3) z [O 3 6 9]
W-~ (iota 4) (iota 5)) -0 E0 2 4 6]

"Notice thfat lie I~I'ictiool is aIplliod o ,v Ito ihe vales \\1i05(inidices are ill thle init(rsei tioli of the

two doliljn. liii (I op~erator iliay he factoredl out of eXpressions. 9sn as its inver-se. 'I1w(first

IPar-illel coiuli'iliicait iil is accoiiiplisfied w~ithI I hie I opierator. which takes a coliilling~ function
a ~~itu ~iuur ,I air ai ',olce xaiifuri .1. Oneii (-it thinik of, the ~ 1)tirtsj - q/ of'

dcII.I~i t I '' Ci I l - -H(1(ref x p) I .. u ~u .owq If q(occu rs more tIaIi roice, a,

i a in /, I 111 Ille vali.s sow lo qC -(, recotihlilied according to f. >-o. iii the resuiltiing xappin.

ifI J Itlil. is detlirnulinid 1)y thn valuies (f dI. andl the rlig) is ltertllliledl bY ilie valuie" o)f r. lot

(1 ,' a--0 b--i c--i d-31,~ a--37 b-4 c--16 d-9 } a 0-37 1-64 3-9}f

I~ Ioh(il a sino . afpirw is also accnplishe withI thle .1 oplerator. An ex1)ressil of' ilie

-I-).1 rlt urns the value prodlicetl by conlliitiiri all thle valueCs of' Na!npiul!g Xr Witl I' Unction f
Lo'xanup (Amin X) woldl retxIrii Il he m6Iitoni valu iii xapping X. Anyv omh1iing iiullclioti
lay h e 'su pplied.

>. I is p pro iepsa niu mher of operators for xa p pnrgs. I-r xai pve xunion takes two xa p pi ii
arid a coniiing function. arid retuns the uniioni Ile coinhituing function is applied when the
s anta index occurs ini hot I ,:appiings. A. special conoining funcd nu. Q. ait~l an rror if it is ca;lled.
Tho fuu rot o over is. defined in trni of xunion:

(defun over (a b) (xunion #'(lamnbda x y) x) a b)

11, "lltifp\ takle-s it t&iiiouif the two xalings iaking t lie, value of the first whien anl ind(ex is dofined
iii hotli. 'I'le fuinction in. dlefinied in terits of n, intersects the cloniiaiuis of two xappings and take,
the values fruin the fiSt. Ot her fiinct ons include shift. which suhtracts a specified integer frori

all th Ii' ice (' of a Ned or. fI oiir, oxaiplC progra in we use thle furn ctions out er-product a rid
transpose. which work an t heir nanies suggest

3.2.1 Discussion: Whly xappings are not enoughi

P rocessor select iona is iimplicit in ('NI Lisp. Bly operatitig onl a particular data structuNre. one
nip1li, tlv selects lie relevanrt processors. Therefore, it is relatively easy to uise an applicative style

in (NI li-p. Ili addition, the ability to create new xappings coiitiniing portions of o1(1 xappirigs

aid piassitig in ast~ argunienits inenins that programus can he strtictutred in a itiodular wax-. These
lamnis ;itl' supported lie te vxarn p irogran in l'igu re 3. (The iiiplit natrix to t he lu-decomp

fliiction is a vNo of xectors. who irt xectors formn tlie, rows of the mlatrix.)
\;iputg~ale iritenited to hide tie inahole iiodel. 'The pi(ograinnier thIinks, only in teriiv of

ah't act ohierat ioti, Hil xapiflpigs. .u I uri fort iriate side-effect of t his particular decsign. however.
in ha things ti i~ hat ilol ht ea~sy to dto oii t6 lim(woet ion NI achine becore very Wficutlt and

('xpl)('i' 'il CM ILisp. S(,eclt il groups of luuto'srs for ili-plaice paraillel oper-ationis is out' of the

-t reu!t of iel (oririec onMaichine. W ni ost of thle rode iii our exaiuiple algorithmta is concerned
\ itl Iiniaripilat iig iew xiuppings ill order to exticn ct ilie rihtlieces of (data hefore oJperatiiig onl

fetri, arid thlen hitt ig thle collilitted data hack1 ill IIlie ri'-dit place. Thlis rnuikes it difficult to IlIituce

althe pro era iii an fin Ii I(' Ilouderl villig lgl-ititiuI.
'lake Ii de-ep breaith arid coniidtr' ie norm i,)jii ti iiignite- :8. Thle fiirict ior takes anl in'dex

a.; -l/e oi. atiil ai 5jiliit' rriat ix iaif (oirgaritcd a-, ;I xNeror of- row-h. anid is sunlulosed to iruuitipl\

(if' o<- (abs (car x)) (ahs (car, Y))) y X))
Jdefim n itax-rOW (i 1ilt)

(let ((col (olist (xrtf' (transpose mat.) 1) (iota M)))
(cadr (3.bigger (ill col (mtask i ni))))))

(1,41i1i swap(i 11 itat nI
le(t * ((ro\vi (xret that i))

k (max-row 1 11 mat)
rows (11' (eq 1 i k) rowi

n (over *((winl rows (mask M entat))
d.fiti non n (I it nmat)

(Iiat (frantspose mat
rcoli (xref ti at)

(newcot l e (o"' (Iiili t ma.k t+ 1 0~ 10) OV) Col)))
(transpose uvo.er {- ewo)t tiiat)

dlfil update (1 i1 n aIt)
(lt((to i mtia~k (± i 1 f

a (ill (xref mlat i) ill))

(xtiol #'4- 9(owter-product a h) eiiiat))
(dletili-rot 1 (moatrix n)

let ((Iloaf toat rix))
(do ((i 0 (4 1 i)))

(moat)

Fi gumre 3: 1J, lDcomtt posit ott lProigt1ato itl Cotinection Iacite ip

to'(-''le mei s itl cot til o be low I lie mant d iagoniat bY - 1.0/ ma [i.i]. First, twvo levels of inodexi ng
:i rv reqiirod to obtin r t toa t[i.. T'heni. moat is t ransposed ila preparation for ext racting the 1"'
columtn i as va ri ablle (Yoli. Next,. a itiask xaplpintg is comnputed for initersection with coli" to produoce
a1 xappi ii"" cool ai ni hg on lY 111ie elemnt s below the mfalin diagonal. The real work Of muIlti plicdtott
is thlt (lte. (C) te coul (I asiY li at s the o * antd ov inl the fou rthI Iinte.) The resulting xappi ng is
pl acod over Ili' old co tin to 10Forti m n(mail. Fitial) 'l%. a nested xa ppintg of otne element is created(to
pl ace t~i mu co/ over t lie t ranisptosed miatrix to form a tiewv m1atrix, wihiclt is then re-transposed and1(
re it red . 11(,i des beintg awkwarid for the programmtier, these manaipttlat ions are expensive at tat -

iei. Thle jirogram i performts two transpose operat ionis, two over Operations, otto, mask creation,
atnd onie mtask a pplicatiotn. 'I'lte over)erat iots 'ould~ 1)e iltexpensivo, p~rovide~d thIiat thle palirs of'

1a iipttg tetligid property* . IL I\'xver. (CM Lisp mlaes no guaran-ves about loca-lit y. And any,
highl I veliitipleotiilat ion of transpose woiti certai miv incur coini icat ci costs.) tist (teatinig
lie itiask tak''s two 0(1 ig o steps (iota anid tift) Atnd cototitnica' on cost is im ttrre(l itt ordetr

to appl *y it. VT11i1. Lligimage prtiihetti> cautse ;ill algor-it itic step t hat sltoold take cclistantlit tle to
act tall '%ta ke U(Ig ii) i tie.

Amot her tptlbtett with thle xatpiiti atisttact ott is i tat totil1tidiiiettsiottat strutmct rsiis

created by nesting. This makes operating on an entire structure rather awkward. The programmer
must keep track of how nianv levls deep thw a operator should be applied. For example, (onsider
these four natriccs, each represented as xappiings of xappings:

A l e f B dC] C { ef D [ef
g /1 1i g h i g h

A programmer might write (over A B) intending to compute matrix C, but would actually get
matrix D. (The correct statement would be (aover A B).)

Luckily, the problem is not that abstractions are a bad idea for parallel languages, but that
the xapping is not a flexible enough abstraction. One could imagine a language like CM Lisp that
allowed one to avoid the masking problem as follows. Suppose one could a-apply a function to
a xapping such that the results of the function were conditional on the index of its argument. A
function of the form "if index > i, then ... else . .. " could help to solve the problem we saw above.
In addition, one might provide tools for creatiiig more complex data structu,'es with user-defined
access methods and locality properties. Such ideas are explored by the next language we consider.

3.3 Paralation Lisp

The Paralation Model [8] is intended to be a machine-independent model of programming, but we
consider it here only in terms of the Connection Machine. The abstraction mechanism provided
by Paralation Lisp [8, 9] is called the paralation, - contraction of "parallel" and "relation." A
paialation consists of a number of sites, which are numbered sequentially from zero, and a number
of fields. The paralation's length (number of sites) is fixed when the paralation is created, but fields
can be created dynamically. A field has one value (of any type) at each site. Every paralation
has an index field, which contains the site-id at each site; this field is created and returned by the
make-paralation function, which takes a length as its argument. Additional fields can be created
with the elwise function, which takes a list of fields of a paralation, performs an element-wise
computation on those fields, and returns the result as a new field in that paralation. The lines

(setq my-par (make-paralation 5))
(setq times2 (elwise (my-par) (* my-par 2)))
(setq sum (elwise (times2 my-par) (+ times2 my-par)))

produce the following paralation:

my-par times2 sum

0 0 0
1 2 3
2 4 6
3 6 9
4 8 12

Aggregation is performed with the vref :anction, which applies a combining function to the
elements of a paralation field and returns the result. Communication is accomplished by the
function <- ("move") which takes 1Im to foli r arpgi,,,,lts: a somrce field, a comiliih ifi ft1 oh,. ;1
(lefault field, and a mapping. A mapping is a collection of directed arrows from the sites of the
sourcre field's paralation to the sites of a destination paralation. There is no restriction on the
nu-ber of arrows originating from or arriving at a given site. The move function creates a new

field Iil. ifo destin at ion para fat ion specifiod 1), ille in ap ping, and then sends the data in the source
field to the Ov (11 Itile newfild aeccordiltig to Ike p)AtIem of the Mapping arrows. If mnore than one
allo[1w ii a fnoin a iensiti. I ilie d ata froin thle source field is sent to all the corresponding
de.t in atl 'Icit es. Ifin)lre la ri on e arrow a rt yes at a given site, thle data is combined according to

11w .specitiod clniilgl fi lictioli. lylliChl cali be ilrhit rar ' . If no arrow arrives at a given site, the
dat a at thfat site inl thle dej'a ilt field is uised. Ini .eneral. a move operation requires O(lg n) time.
Note I fiat <- is More eVlierd I hall .i Conlimmuication of CM Lisp because a data item can be sent
to miore t ha ii onet(place.

A\ inapfpinig is ziio.>I colillill cii p rated wit Ii thle match function, whichi takes a source and a
de~t inat ion fteld(. and IIpirod ices a ii arirow firi it somi ce site p to a destination site q if and only if

lie soiiiree fieldf at p cotai iis tflie, sainie valute as tflie, source field at q. This can be quite useful for
>V ilholic colililtat lt loll . Ilditlili lookipi). P rod icing a inapping with match involves sorting
iiid re(j iiiires () Ii, ii) tinw e)*pecial pm poser in appu igs nmaY also be created with the functions choose

anld collapse. which clealt.' iew\ paralatiis \k~hen uised with <-.

Ile Plaralaiorl Lisp -"~p fa ciltv peritls the optimization of commonly-uised communica-
ti Ills pattIerin, and1(the dei t ion of nat it ra coorinate systems for accessing paralations. The
make-shaped-paral at ion fiiictioni takes at fist of iiafppiilgs (from a field to itself) and returns
it liv% pa'ralatIioll (if tit ilppropriiil t eiigt Ii or exam ple, a ring-shaped paralation might have

iai; 1.-toi rotteo hif'Id jill po'it ion ill tile clockwise and cottnter-clockwise directions. These
11T ~ p t~>Call [tler he tise'd bY si p plYig anl index to Ili shape-map function. Ini addition to map-

ing. ae(I' fi.milns ia -Vhe a >501 itted witl Ii pa rala ton. The standard Cornmon Lisp function
elt I., lisedl to access i)~iralilt ioul fields 1) 'VSite-id. If it(desires, the programmer can define an fref
f ilc t ion for at pa ralattion to perforrii access iii different coordinate system, and may supply a print
fii lie t il to p rilt ouit thle fields of it paralato dOl(i fferently. In this way. a grid-shaped paralation may
he acce -sed uising- row and c0111ii indices arli ay- be printed in a form reminiscent of its shape.
WhVlli shlape Illafpjiris a1re slifilild wholn ;I larallatiorl is created, the access functions are added
to .ltrgpar;ifation> with def ine- shape- access, which may also be invoked on an unshaped
pa ra t lll. fillipli eliltat in> of P a ra I ttion Lisp iiaY provide libra ries of functions for creating
pairalatibus of v;rlis shapes.

Palradl ioll Lisp h1is a notion of locoality. Ileldl eiltries for the sane site in the same paralation
:1 io'"Ilerl(to he ;/ (17 eaIch Of111I!. Ill additionl. the sites colinect(d by iappings supplied for a

ltpedparafat iu a l Ilidoilled 1iib lli(ii r ';ach (Ither. The compiler niaj lay out the paralation
oni ft iiiIc hI lie so tlll larth arrows, ofI Ilie rlliappillg> are ot.'Data in different paralations are
i (j1lilojre(l t o b~e fti t.

.3.3.1 Discussion: Why too nitich power cani huirt

A a.,toLiJpP PYJrogratl for 1.1 deeuliipositiorl is shown InI Figure 4. The input matrix is
ajs~liifned to he a1 grid-shiaped piiralkoItii. lhje prograrinlis relativelY easy to read arid understand,

i~rge\ ha~I()ftill(albhiiY to rIecl' t Ilie ilatrix iisig at iatuiral coordinate systemn. Even though
GoI prIrit l;ikes It(, iu-e (If prl-d~ilil~ Aril-sliapIwl ilappitigs for communication, it benefits from

l)oc~ijliv ill forr 1Iil iloll slifli(d Ibv t flose filappirigs.

A clIws ;Ih at It, jIe'iliIll lrli t ivvilils (itIY tm inc se of <- arid no ulse of match, even
ugh11 Ill. 1jgo:;tIlll does5 (1111tI' ;i lt of' Ciiiiiliioin. The reason is efficiencv. Rather than

i11ts lls I xpho isi oferiitoirs. f ref, are used to accoiifisli corntnrlicatiotii Although this (hiack)
>1011.5agali1 li gr;1ili Of flit, pIrhilfat rI pfli;,sofflv. it illakes the program iinn significantly faster.

'onlli t~ Ilie fllhwlig ifit;It VI' 111velt lof ilie swalp routinle.

;!f il If "wallp (I t11.w (dI 111;1t

(defun bigger (a b)
(if (> (ahs (second b)) (abs (second a))) 1 a))

(defu n max-row (i row col mat)
(let ((col-i (elwise (row col) (logand (>= row i) (= col i))))

(pairs (<- (etwise (row mat) (list row mat)) :by (choose col-i))))
(vref pairs :with #-bigger else 0)))

(defui swap (i row col mat)
(let ((k (max-row i row col mat)))

(elwise (row col) (cond ((logand (row i) (> col i)) (fref mat k col)
((logand (= row k) (>= col i)) (fref mat i col))
(t (fref mat row col)))))))

(defun norm (i row col mat,)
(let ((t (/ -1.0 (fref mat i i))))

(elwise (row col ma) (if (logand (= col i) (> row i)) (* mat t) mat))))
(defun updale (i row col matI

(elwise (row 'ol mat) if (log:mid (> col i) (> row i))
(+ ma (* (fref mat r w i) (fref mat i col))) mat)))

(defun lu-decoi up (values)
(let* ((mat (elwise (values) values))

(n (sqrt (length mat)))
(self (site-names mat))
(row (elwise (self) (first self)))

(col (elwise (self) (second self))))
(do ((i 0 (1+ i))) (= i (sqrt (length mat))) mat

(setq mat (update i row col (norm i row col (swap i row col mat)))))))

Figure 4: LU Decomposition Program in Paralation Lisp. The functions swap and alt-swap are

interchangable.

(let* ((k (max-row i row col mat))
(newrow (elwise (row col) (cond ((logand (= row i) (>= col i)) k)

((logand (= row k) (>= col ;)) i)
(t row))))

(origin (elwise (row col) (list row col)))
(dest (elwise (newrow col) (list newrow col))))

(<- mat :by (match dest origin))))

The routine is longer than the one in the example because it needs to set up the key fields for the
match. To compute the relative speeds of the two functions, assume that our matrix exactly fits
on the Connection Machine, with one element per processor. The match function, which produces
a canonicalized mapping by means of two sorting steps, takes roughly 60 milliseconds (the time for
two sorts on the Connection Machine [13]). In general, the <- operation also performs a sort. but we
will assume that the compiler is smart enough not to sort if a combining function is not supplied. It
takes 260 to 820 microseconds for all processors to send one message to some other processor. The
frefs in the example program would probably be implemented as a get which translates roughly to
two send operations. Since there are two sets of frefs in swap that actually cause communication 4,

4Since mat is not. an elvise variable, fref must he u sed in tle default case of thle conditional, (ven thotgh 1o

t'0111 il nicaftion w 1 (iirs.

11

Language NiIsp (Ni Lisp Paralation Lisp
Parallel Variabl.. pvar xapping, xector. xet paralation field
creation *def\ar. *let, !! iota, a make-paralation, elwise
st ruict ure fix(d linear or grid iested xappings user-defined shape
access pref. pref-grid xref elt, fref

coordlinates fixed index xappi ng domain user coordinates
Processor Selection *all . *when , etc. i nplicit iniplicit

Parallel Coinputation !! 0. 0 elwise

('ommunication pref!!, pref-grid!! (3f d .r) <- with mapping
Aggregation scan!!, scan-grid!!, (3f x) <- with mapping,

*Iax. *rin, etc. vref, choose
combining function fixed set arbitrary arbitrary

Figure 5: Language Summary Table

the entire conimunication takes about 2 milliseconds. Therefore, the alt-swap routine would run
thirty times more slowly than swap!

So. efficient Paralation Lisp programs are characterized by (1) working on entire data structures
(as opposed to passing portions of them as new paralation to more general routines) and (2) using
fref for communication (as oppo.led to the general communication primitives provided by the
language). Programmers are forced into this ugly style for two related reasons. The first is that
match and <- are too powerful. and therefore too expensive for many common communication
patterns. The second is that creation of new paralalions for working on portions of data is more
expensive than doing the computation in place. The communication for creating new paralations
and then placing the computed results back into the original data structure are high, especially since
the language regards the new paralations as "unrelated" to (and therefore far from) the original
data structure.

3.4 Comparisons

All three languages we have explored provide a parallel data structure and provide operators
for element-wise computation, global communication, and aggregation. (See Figure 5.)

The explicit processor selection of *Lisp makes programs efficient. However, explicit processor
selection together with the lack of an abstraction mechanism make it difficult to write modular
progranis. because portions of data cannot be conveniently passed as new structures to procedures.
These difficulties are somewhat relieved by Connection Machine Lisp, which uses the xapping
abstraction to permit implicit processor selection. Although it is possible to pass portions of data
as new structures, it is quite awkward to specify the right portion to use. This is because multi-
dimensional data structures can only be created by nested xappings. In addition, creating new
data structures make one a bit nervous, because the language makes no guarantees about the
locality relationships betweon different data structures. In Paralation Lisp, the multi-dimensional
access l)roblenis are solved by the shap- facility. And the notion of locality permits the compiler
to efficiontly distribute a data structure on the Connection Machine processors. A desire to have
a miinial number of primitives forces the conimunication operators of Paralation Lisp to be too
general and expensive for many situations. Also, efficiency is sacrificed for modularity, since creating
new data paralations as arguments to procedures and then replacing the results in the original
st ructulre is expensive.

12

At this point, a scientist/programmer would justifiably choose *Lisp out of an unwillingness

to sacrifice speed for modularity and abstraction. The deci.ion would not be not easy, though,
because it is desirable to write modular programs that use libraries of general-purpose routines.
In the next two sections, we propose enhancements to Paralation Lisp that permit one to write
programs that are both efficient and modular.

4 Fast Mapping Creation

We haxe seen that the basic communication mechanism in Paralation Lisp involves creating a
mapping by means of a match on two fields. Computing a mapping this way is expensive, requiring
O(lg n) time, where n is the length of the larger paralation. This cost is particularly disconcerting
when compared with the time actually required to move the useful data, which is a constant when
the network is uncongested.

To make matters worse, in many computations, the overhead caused by the expensive match
is not neccessary because the destination site for each data value can be computed locally at the
source. In such cases, it is possible to get around this problem by using setf and fref instead
of using <- and match. (Recall the two versions of the Paralation Lisp swap routine.) But this
solution does not admit a combining function. A solution more in the spirit of the Paralation Model
would be to provide an additional function for creating a mapping, in which the destination sites

are computed locally. We propose the f.nction

(fast-map dest-field source-field),

where dest-field is a field in the destination paralation d, and source-field is a field in the
source paralation s such that each field element contains a site-id in the destination paralation. This
function produces a mapping (in constant time) with the obvious properties: When the mapping
is used in conjunction with <-, it causes the data from the given field in s to be copied to the sites
in d according to the site ids in the source-field at the time the mapping is created.

The combining function and default fields of <- retain the same meanings as when <- is applied
to a mapping created with match. The usual procedure for using fast-map would be to create
the source-field with elwise. To facilitate fast mapping creation for shaped paxalations, the
shape designer might supply a site-ref function, which takes a shaped paralation and access
coordinates as arguments and computes the corresponding site-id. Note that fref could be trivially
implemented on top of site-ref.

5 Paralation Views

We have seen that performing an aggregate operation oi only a portion of a paralation field is
rather diffi:ult and expensive, especially when side-effects are desired. One cannot pass a portion
of a paralation field as the argument of a procedure without creating a. new paralation of smaller
size. moving the data to that smaller paralation, and then moving the data back to the original
paralation after the procedure returns.

Of course, one is allowed to nest paralations, but this nesting has a fixed structure, and often
one likes to view the data in different ways at different times. For example, one might, arrange
a matrix as a nested paralation, whose elements each contain a paralation with the elements of
that row. This makes operating on a particular row relatively easy. But working with a particular

column becomes very difficult! We saw a similar problem with Connection Machine Lisp.

13

WEE Wi1: Ell WLE 0W7IT
WEE EEOl EWE EWE

a.1.C. d.

Fi,,ir, : hre ie o'. lanatix,

III this section, we propose Pain/atin 1wcanl enhancemient to Paralation Lisp that allows a

g5fiven data set to be viewed ini multiple waYs.

5.1 What is a View?

XWp de(fi tie a vc ' to be a pa3rtition ct I hie sites of a pdlalation, called its pcarent, into a set of classes.

We represent a view as a nested pa~ralaticm. whose elements are the classes of the partition. Each
class lparalation has as its sites thie corresponding sites of the parent paralation (renumbered from
zero). In the existing Paralation Lisp language, one call partition the data of a, paralation into
several ordlinary paralations using <- with choose. Hlowever, there are two important distinctions
bet weeni views and ordinary paralatiois.

" Semantic distinct ion: A1cci shares portions of th(pJareflt*s fields wvith the parent parrlation.

" Locality dlistinct ion: The .0't(, (of aI class arf locatcl onl the samec physical processor as the
corr(spofding! sit(.s of thr par(of parab/oll.

These properties of a view periti init 'y common operations to be easily performed in place, without
the communication overhead that would result if ordinary paralations were used. Notice that the
SOCoiill property may' result in the(sites of a shaped class being physically farther apart than one
might like because of the physical arrangement of the parent paralation. Section 7.2 discusses one
method for alleviating this problem.

Figiure 6 shows th ieo pcilv view\s of a 3 x3 matrix. Flhe sites in the classes of each view would
he loca ted onl the samie processor as thle Correspond ing mnatrix elements of the parent paralation.
;111(1 wo)iild shiare thle corresponildiii' Hl!d (lit ries at those sites. Note that tlhe.site numbers of class
eloejitejs are ron iiinberod fromi Zero, and(t Iiat Classes niaY have a different shape from the parent.

5.2 Creating Views

1: t Iiis section,. we expla in tI Ie 1 iods) b* vl \0i li views a it- created, it roducinrg syntax as necessar.
Views; inay be created in thIiree (Ii ffreiit ways. lproa/(c. .spht, and (I xtihcr. Several viexs of the samne
pa ra at ion ia v exist sim iilt a neon sly. lit add(it or!, since views and cla-ses atre both piralations. onev
Conuled concei va Aly create vei ws of I lieill, a's wel'l.

5.2.1 Project

For shaped paralations, one may project on a coordinate (or set of coordinates). The classes of
the view contain elements whose value(s) for that coordinate (or set of coordinates) are equal. For
example, the line

(setq rows (project mat '(t nil) 'ring))

projects on the first coordinate of a grid-shaped paralation mat to get a view rows whose classes
are tho rows of the grid (as in Figure 6b). The second argument is a list of booleans indicating
en whch coordinates to project. The third argument is the desired shape type for the resulting
classes. For the moment, one may think of the shape type as simply defining a set of mappings
and access methods (print function, fref, etc.) for the resulting classes. Later, we will see how
the sh-ipe type of a view might be used as locality information by the compiler. To refer to the
third row of mat, one would wriio (elt rows 2). When multiple coordinates are projected, f ref
is used to access particular classes of the view.

Projection is useful for working on slices of multidimensional structures. For example, one
might like to filter and normaliz- each frame of a digitized movie (projecting on z) and then apply
a temporal filter to each pixel (projecting on x and y).

5.2.2 Split

A second way to create a view of a paralation is to split' it according to subranges of the access
coordinates. For example, consider

(setq mygrids (split ten-mat '(3 7) '(2 4 6) 'rectangle))

where ten-mat is a 10 by 10 grid-shaped paralation. The resulting view, mygrids, partitions mat
into 12 classes according to three subranges of row coordinates (0..2, 3..6, 7..9) and four subranges
of column coordinates (O..1, 2..3, 4..5, 6..9). To access a particular class, one uses fref with indices
corresponding to the subrange in each dimension, For example, (f ref mygrids 2 2) refers to the
class of mat whose row coordinates are in the range 7..9 and whose column coordinates are in the
range 4..5. The view in Figure 6c could be produced by (split mat '(1) '(1) 'rectangle).

Splitting is particularly useful for divide and conquer algorithms. Some parallel divide and
conquer algorithms for image processing are describ-,d in [12].

5.2.3 Extract:
The most arbitrary (and most expensive) way to create a view is to extract it by specifying a field of

non-negative integers, and assigning all sites having the same value in that field to the same class.
For example, suppose that values is a field of integers and prime is a primality testing function,
and consider the following statements.

(setq decider (elwise (values)

(cond ((< values 0) 7) ((prime values) 2) (t 6))))
(setq foo (extract decider 'unshaped))
(setq positive-primes (elt foo 2))

5 Not to be confused with the split operation of [3].

15

Tihe misha)edt" paralation positive-primes contains all sites whose values field contains a non-

lnegaltive integer satisfying the prime tester. Notice that the values used to access the different

classes of foo are tile vall,-; from the decider field. Of course, later changes to that field do not

affect class nenbership in foo. Also, note that the length of an extracted view is one greater than
he Inaximuni value in the field supplied to the extract function, even though some of the classes

may be empty. tere, the lengt h of foo is 8. and (elt foo 5) is a paralation of length zero. The

view in Figure 6d could be produced by

(let (decider (elwise (site-names)
(cond ((= (first site-names) (second site-names)) 0) (t 1))))

(extract decider 'unshaped)

As ali example application, consider a map of climate data represented as a paralation, whore

fields contain informalion such as altitude, average teniperature, and average annual rainfall. One

night use ranges of sonie variables to slice il) the map into regions, and then apply aggregation

functions to each slice in parallel.

5.3 Operating on Views

We have said that views share fields with the parent. Given a class of a view, one can access the

corresp,,nling portion of soine field of the view's parent using the function take, which we now
lefine with an exampl. Suppose that the view paralation my-view has my-data as one of the fields
of its parent. Then th line

(elwise (take my-data (elt my-view 3)) (analyze my-data))

causes the analyze function to be applied element-wise to the data elements corresponding to the
fourtli class of liiy-view. One might also write

(elwise (take my-data (elt my-view 3)) (setq my-data (analyze my-data)))

to up1 dat, the values of mv-data in place. Another useful way to use views is to operate on each of
the classes in parallel. For exaiple.

(elwise (my-view) (vref (take my-data my-view) :with #'max))

returns a paralation containing the niaximum data item in each view. Note that operations on
the eleint s of a cha;s are perfortnd within the coordinate system of that class, and not in the

Co, ,rdiliate s'stein of t lie parent. This is one reason that views are so expressive, as we will see in
lithe l xt section.

6 LU Decomposition Revisited

lFigure 7 contains anl LIT decoiposition tprograin written using Paralation Views and fast-map.
'iiiko t1li programs we have seon thus far. this LU decomposition program is recursive. It was easy

o write this way beca .se tie view facilit t v erlnits a grea ter degrc, of iodularitN than we have

.Oet in any of tile of her langia ,es. Subrotititiues cali work wit hin their own coordinate systems, vet

it is not awkward to call them on selected po,,'ions of data. It is no: necessary to replace fihe data

6 One would expect that classes created by extract would be unshaped. tfowever, like project and split, we
v',rmit a shape to be specified. In all three cases, i1 is tlie, responsibility of tle programmer to ensure that the
,imeusions of tIII resilling classes conforin to the specified shapes.

16

(deful, bigger (a b)
(if (> (abs (second b)) (abs (second a))) b a))

(defun max-entry (vector)
(vref (elwise ((idx (index vector)) vector)

(list index value)) :with #-bigger :else 0)))
(defun swap (fieldl field2)

(let ((temp fieldl))
(setq fieldl (- field2 (fast-map fieldl (index field2))))
(setq field2 (<- temp (fast-map field2 (index fieldl))))))

(defun update (mat left top)
(let* ((self (site-names mat))

(row (elwise (self) (first self)))
(col (elwise (self) (second self))))

(setq mat (elwise (row col mat) (+ mat (4 (elt left row) (elt top col)))))))
(defun lu-decomp (mat)

(if (= (length mat) 1) mat
(let* ((rows (project mat '(t nil) 'unshaped))

(cols (project mat 6(nil t) 'unshaped))
(quad (split mat '(11) 'grid))
(max-pair (max-eitry (elt cols 0))))

(swap (take mat. (elt rows 0)) (take mat (elt rows (cadr max-pair))))
(elwise (vector (take mat (fref quad 1 0)))

(setq vector (* v (/ -1.0 (car max-pair)))))
(update (take mat (fref quad 1 1)) (take mat (fref quad 1 0)) (take mat (fref quad 0 1)))
(lu-decomp (take mat (fref quad 1 1))))))

Figure 7: LU Decomposition Program using Paralation Views.

after procedure calls because operations can be performed in place. Note the generality of swap
routine, which simply takes two paralation fields and swaps their values. Also, the max routine
simply takes a vector, without extra indices. It is easy to see how a library of useful operations on
vectors, matrices, etc. could be exploited using views.

The frequent appearance of take in programs is somewhat annoying. One might imagine a

shorthand elwise notation in which the first element-wise variable set the context for the rest of
the elwise. Recalling the example of the previous section, the two lines

(elwise (take my-data (elt my-view 3)) (setq my-data (analyze my-data)))
(elwise (elt my-view 3) my-data) (setq my-data (analyze my-data)))

would be equivalent. Using the standard elwise naming shorthand, one could also assign a variable

name to the class, and refer to its indices element-wise in the computation.
Of course, all of this expressive power is only useful if views can be implemented efficiently.

7 Implementation

In this section, we suggest a possible implementation strategy for Paralation Views. We first
describe data 6tructures for supporting the required view operations. Then we discuss a way in
which adding standard views to the shapes library can provide additional locality information to

the compiler.

17

7.1 Data Structures

All important consideration ill desiginng an i nipleient at ion for Paralation Views is that a single
vIw ('reatlion may result in a l,,rge number of new paralations. For example, projecting on one
lilielis.iohi ofau n " x matrix would create u ±1 new paralations. A naive approach itight create n+I

new data structures (serially) on the front-end to keep track of these paralations, but this could
cause prollemis with the asymlptotic complexity of algorithms. An otherwise O(lgn) algorithm
could take O(a Ig n) time. A similar problem would occur in a divide and conquer algorithm using
splitting to create paralations.

For the above reasons, we would like to keep view creation as cheap as possible, even if this means
storing more information on the processing elements. As it turns out, storing more information on
the processors also makes implementation of element-wise operations on classes relatively simple
and speeds communication within classes. This is especially important when many classes are being
operated on in parallel (see Section 8). The front-end must store enough information about a view
o select particular classes or particular elements of classes, and it must be able to identify the

fields of the parent of a view. In addition. the processors must store enough information so that
class sites can efficiently locate other sites within their class (for sending or getting data).

The current inmpleineltation of Paralation Lisp tuses egncflfs [3] to represent nested paralat ions.

This successfully minimizes the information stored on the front-end and is useful for scan operations.
However. segments would only apply to views if each class of a view consisted of contiguous sites
of the parent. Since this is not the case. we need a more general strategy. Suppose that for each
viw, t lie frond-elld stores a single record containinug the name of the parent and a representat ion
of the information used to create the view. For projection, the list of projected coordinates (e.g.,
(t nil)) would be kept. For splitting, the list of subranges would be kept. And for extraction, the
maximum valu, in the decider field would be kept. In addition, the front-end would keep pointers
to three new fields of information to be used locally by the processors, as follows:

" Indicator field: This identifies the class to which the given site belongs. For projections. this
is a list of that site's values for the coordinates being projected on. For splits, this is the
corresponding subrainge of the coordinates. And for extractions, this is a copy of the decider
field.

" Site field: This is the site number within the view. For projections and splits, this can be
easily calculated from the parent site number and the information in the indicator field, given
Ihat shape designers supply cerl ain functions described below. For extract, filling this field
would requir, an en nieration operation for each class. We do not expect extraction to be
hiexpnsivo if the numnber of classes is large.

* Liig~t field: Tlhis is the length of the class of which the site s a innml)er. For projections
a l(d splits, this can be computed (irectly from the indicator field. Fo! extraction. this would
have to be broadcast from the front-end.

The paralation in l'igirve 8 shows the indicartor, site, and length fields for the views in Figure 6.
To .support the necessary calc ulations for filling in these fields when the pareit paralatioi. is

.laped. we require that shape access methods include three additional functions. Tl.e first function
takes a site-i(l ar] range of user coordlinates and produces a new site-id as if the sites in that range
wer, fil liered front zero. (Note that this can be usedl for projections a.s well as splits.) The second
functiot is the inverse of this. The third function simply takes a range of user coordinates and
returts the number of sites in that range. For reasonable shapes, these functions would be quite
siml)le and efficielt.

18

site sit -rian w., ird-l) si te- 1]lif-I1) iI, I-c SO r- lenl-r irild-(sir-e n- I
(00)) 1 0 3 ()) 0)) 1 U 0 3

I (0 I1) 0 1 3 (1 2) (0 0) 0 2 1 0 65
2 (0 2) 0 2 3 (1 2) (0 0) 1 2 1 1 6
3 (1(1 0 3 (0 0)(1 2) 0 2 1 2 6

(1 1) 1 1 3 (1 2) (1 2) 0 .1 0 1 3
5 (12) I 2 3 (12)(1l2) 1 .1 1 :3 6i
f; (2 0) 2 0 3 (0 0) (1 2) 1 2 1 4 6

7 (2 1) 2 1 :3 (12)(1 2) 2 -1 1 I6
S (2 2) 2 2 .3 (12)(t12) .3 It 0 2 3

Figure 8: Fields for IrrIIev views of a miatrix.

Given thle a hove fields and related I"fIrtrions. i is easy to see hlow processor selIect onl. loga nrt 11 fillCi
scanls. anld irilerprcessor corn utunication could he handled efficieritl 1,0fr pro jected views anid Split
views. It e1rProce1s.Or cIi 11 11111 lilcat 1(iii for extracted views. ioxvever, wouldi he expensi vov veni if the

pattern of conimificat ionl withinl ie (lasses is, knfown. Thiis Is be(cause there are no -rntries ithat

canii ,l il)plie(l It ihe albove filiiiii Urs to (ici'kIi il othlen eleniierits of a class in terriis of thp
pa rent's coiordlin ate svNst em. One won~ h1iiave to use th e match anid < - move operators. or(wiie
an i triiilnieriltat iol of fref rising associative lookup.

7.2 The Shape Library andc View Locality Inforniation

Frornt bothI a user-interface p~oi nt of view arid air fricienc ,v poi nt of view, it 'wonuId he isefir I to
assic at e commlylil uised views WNt Ii hapes Mi hw samew wax hal commnoriv uisedl mnappinrgs a re
cii men il associa tedl withI shir ps. We wonuld irrod ifv ilie frin ctiori make -shaped-paral at ion to take
twxo a rgn merits, a list of iiiapplinrgs alnil a list of views, lire views coiddi he accessedl isi rig a firnict ioni
shape-view iii the saine way that inappings are now% accessedl with shape-map.

If thre corripi Ier knows that aI cert aini shape wvil bIe viewed iii cert aini ways, it call nra ke rise of
the locality in formlation proividedl by thre mnap[)i igs associated withI the classes of thle views. F'or

exaniple. if the comnpiler knows that a muatrix is going to b~e viewedl as a collection of rings using a
p~rojection onl x , it canl lay out tire mnatrix oil the, Connrectioni Machinie hv percuhe so that. tie first
elemient of each coluinn is near the last elennierit of each column.

As a sidle note, we suggest t hat thle declaration of access inet 110(15 and locality inforniat ion sholdd
he helter inriegrated (perhiaps .:sing~ a single furnrct ion instead of two) so that user-coordinates could
be uisedl to (finrappinrgs alrid views in a iore con venienit way. Tihe cu rrrnt laniguage perri ts'

access niet hods to) he added on ly after the thre pa ralat ion, (and its correspondin ri appinrgs) hrave
alreadly been created.

8 Achieving Nested Parallelismi

Pa ralat ion Vie~ws provides air ideal sett inrg in wlr ci' to l)Crformin paralilel p rocedhurre calls oii (Ii ferent
portions of a data set., For exarriple, we saw earlier thlit one -arr easily express p~arallel ag~gregation
oir all thre rows of a inatrix. Views are true har it ions of thre pare nt. Thre sites of classe,., do riot
(overla p. so scanus an d] eleinent- wise coirpu tation s oil classes c'an proceed iii parallel. HIil t riot all
iriagi niable, operations' on one data set adilrit, pa rallel execir lionl onI irrari. dal~ta sets. liur v\airi ple.
consider- a proceilire that , givent a vctor, coirilt s Ofhe inraxiiiur ni value I'm1 ,. in 1 hrrt vector lIv ;I

1 9

sCanl C iiilluatiori anid Ilien broadcasts an inst ructiton to dlivide all the elements of the vector by
VAit elwise call of tIWs pnimi(lvd mvon imililil %vecors xuoud necessarily result iii serialization

,)f ~iiiii Stepi. lbecaii'o thle front -(11(wouldl have to inramas a ddhffr v.iicr. to lhe elemients
o f 4,;~l t v Iec tor'.

A\ prmoditrf canl be executed inl parallel onl multiple data sets only if all immeodiate data con-
ai ied il i list I'llct iotis broad cast by thle fronit-end is conist ant over the parallel invocations. Thiis

leadls ins to at progratiinig pairadligni re call corn putt -(iqr(yJitc-flo(1 (('AF). as opposed to compute-
a g a egtbroadcast ((MBI) of Q IN The asic idea of' this paradigm is that thle results of an ag

g regalti 0 i step (scani coinpii at n) are not b roadlcast to the processors by the front end, but are
flooded(back to thli processors usig anrother scan in the reverse direction. Ili thiis way, the front-end
is oily rfe ,porsi ble for issuinrg data-iadperident imtrutions. The programmenr coulId write proce-
dii ni's ll i ,hs pa rad igiri . or possibly anl opt iinizinrg coinpiier could convert at CAB 13proceduinre to
a ('A p roi in tr if it is rf'cogri i/ed thfat thle proced rir is invoked in parallel. Of cou rse. one has to
be catrefil not to blinidly convert ;t rnsinl t his. wa *y. When t lie nuimber of parallel invocations

iajl it nlay be rniu)re effhcierut to do a coistarit-tirnie fbroadlcast serially' than (10 a logarithinic
iloiil_ opor4 Iwion ill parallel. H owever. it rriiglt be possible to optimize tHie flooding plias usinp,

\i 'vii ili i ictiris to the (onnwiec n Machine routers.
Nlo-i auie'rgalionl opermi iowit on te Conrection Machiine are accornplishied with logatnitbruc

Which carti easily take p1 ace on i nItipde dat a sets in pilaral lel . HIowever. cert aini operat ion',
(111ii toitwized 11sing r le 'wrdOrcapability. W ih (foes not lend itself to parallel execution.
l'viil 1,. lore 1arei Ilul ca nWhich th lie 'ired-Oll could be risd efKcivly inr parale proxmd ire
IlL [irin ope unrinilorliluse ofthle wireul-OR is tod(etect termnination ofani it erat ive p~ro'edlure.
It o'idI still be used ! i detect terruiratiiri oni paralle ivocat ions of that procedue. providled that

1ext ra it eration,' of the alg"orit fin are, acceptable arnd t he uonihiotis for signalling termoinat ion
muri stable, or

2. prioce*sso;rs terniinate independently.

[f etltof I i's oruli urs hold. fne sitniply itraites until terriiriatiori is detected accross all
inivol at ii iii

9 Conclusion

\\ ;1vi' 'xatnjinid throvtaigig' ill tenis of their ability to expriess eff[icienit scientific prograini's
for tilie ('irtrictioti M\Ichli. We concliuded that tfii explicit processor selectionl of *Lisp produces
thficteit bilt ituotuolithuic p)rograrris. while the abstraction litrcharIiisrins of (Cornrectiori Macline Lisp

;111d hP,11ra1lioru Ll provide irrilulicit plocessoin selection ail inicreasedl niiodfilarit , at the(expense of
.fh(ji lcy. 'I Ii'' ineofficiencies, result frorii aninu!iht tonp~ fun.1 to,. I Irtitoris ofd(ata strnuctures

"it iti awkwardly nmiirg th lit' fta to new st r"riirs and t hen irnovirig the results back afterwnards.
I Ilie larailio inisp shape, facility p)rovidhes a fiexile abst rac t ion mechankis that appears to have
pot itiil for iipro\'inrg tilie efficien cy of Iprograils.

Wi, pi-e'vited laralation Views. ant enilancetnwenit io thle shape facility of lParala ion lIsp that
iriisefliciejit ill p)lace coripjwtatioris onl portions ofat a strtn s to be expressedl in a straight-

fiurwiil nnanitir with a sriall set of operators. WeV saw thnat the view abstraction integrates well
With I rli ''Nist il' Pralation Lisp lanriguage an to lroyies excrellent sirupport for Mfodluilarity an rie isIlY

pa 1rallelistnn.

20

A possible approach to implemienting Paralation Views wvas suggested, but many of the details
still nieed to be wirked ou t. Fo: example. wec need to .4 udy w ays to efficiently handle c rea ting
views of classes, both singlY and Mi parallel. This is particularly important when thp split oIperatioti
is use(; to create xiews in a reciursive program. Other w~ork might include integrating the access
iiet !hod defi itions with locality and view descriptions so that mappings and views could be more
easilY creat ed in terms of uiser ac cess coordinates.

File laralat ioni Model is intended to be machine-indepenident. It would be interestig to see if'
I arahiatim ViNtews is a practical idea. for ot her architectuitres.

Acknowledge ments

I t liatik t\ atrea exaniniationi conmmittee, Barbara Liskov, Arvind . and Rishivur Nikhil, for sug.-
gestli iA thatt I study these languages. I also thank Salty Goldmani for hier comments on an earlier
draft . 111 Ken stecel(, for a discussionl ab~out L U (ecornplosit ionl algorith Iills.

Re fereniices

.I Aio. A\.. lHopcroft. J.,. and(Ullmnan . .J. Vic Design (anid Aotalsi'sL of Cotopuh r .11Iquoi//I ;n1.,.

Addisonl-Wesley. 19714. Chapter 6.

2Ar in i an it(ka n ad ha;)m. K. Pt re S c ie nt ific Il rog ra in i ii n g ott 1 a r alIIe I Macli ities. N 1.1I.1. l a 1)-
)rat or *vfor Comiipu ter Scienice. Compu tai ion St rt ct uires Group1 Mento 27-2. Ma rcli 19 ,7 (revi ed
IFebru ary 1988).

[3j B lel loch, G . and] Little. J1. Parallel Solut tions to Geometric Problems ott ' ie(Scaii MIodel of'
Comnputation. .M.I.T. Artificial Intelligence Laboratory Memno .952. February. 19S8.

[l (iormen. T., Leiserson. C, and Rivest, R . Algorithms for ParallkI Cotpultrs. ('hapter :32. 111
progress.

[5] Hlillis, WI.. The Conncti'on M1achine, ACMI Distinguished D~issertation. MIT Press. 198,5.

[61 harp, A. Programming for Parallelism. IFEE Computer. Vol. 20, No. 5. pp.4.3-57 (MaY. 198,7).

[71 Nelson. P.. and Sn 'yder, L. Programming Paradigms for Nonshared Memiory Parallel Comtput -

ers. Frotn Th(Characteristics of Parallel A4lgorithims, Jamieson, Gan non. and Douglas. vd'.
MITI Press. 1987.

I8 Sahot,. G. An Archiitect ure-hidependent Model for Parallel P~rogrammting. lPli.I). Th'lesis, llar-
vardl University. Div isioti of Applied Scienices TI? 06- 88, February 1988.

S9 abhot, G . Pa rala tioni Lisp Referen ce Manual. Thin king Machinies Corporat ioti Tech imcal Re(iort

1)L187- 11, May 5, 1918.

[1(0 Steele, G. C'ommnon Li'sp, The Language. Digital Press, 1984.

[11] Steoee G.., Hillis, W. Con nection Machinie Lisp: Fine-Craitied Parallel S 'mbnolic IProcessi ig.
Iii Proc. of 1986 ACM C'onfercncc on Lisp and1(Functional P~rogramm ing, pp. 279- 297

[121 Stout. Q. Properties of Divide and-Conqlter Algorithms for Image Processing. Iniirc of
198.3 IEEE Workshop of Comptpner Ariyhcfr for P"Mtrn A4nalysis aid Image IOatluhM-
A1fariagernu id. 1pp 20:3 -209.

21

[13] Thinking Machines Corporation. Connection Machine Model CM-2 Technical Summary.
Thinking Mzchines Technical Report HA87-4, April 1987.

i -] Thinking Machines Corporation. *Lisp Reference Manual, Version 4.0, 1987.

22

OFFLCIAL DISTRIBUTION LIST

Director 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency

1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 copies

800 North Quincy Street
Arlington, VA 22217

Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies

Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies

Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies

Office of Computing Activities

1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy

Head, Research Department
Naval Weapons Center

China Lake, CA 93555

